More on the omega – some better rates/trigger counts

Richard Seto

UCR

Light/Heavy PWG

Aug 28, 2003

Like sign subtraction – not completely correct 2.5 Mev bins RBW*Gaussian+2 deg polynomial

- \sim 43 events chisq=89/78
- M=772.3 \pm 0.9 Γ = 8 \pm 4 σ = 2(fixed) (all in MeV)
- $S/B \sim 0.5$
- Tight cuts-to do: ① loose cuts ② find phi

~60% are in same arm (ert requires higher energy)

ERT configuration changes

- ERT_electron = 2x2&&RICH (no prescale)
- ERT phi=2 RICH (~6 prescale)
- 2x2 thresholds (600, 800, 400, 800 MeV)

This table gives a brief overview of the thresholds (DAC values) used in Run 3.

Date	Run	4x4a	4x4b	4x4c	2x2	RICH
05/13/03 18:46	89446	30(29)	31(30)	29(28)	34(34)	920
05/02/03 17:57	87618	30(29)	31(30)	29(28)	24(24)	920
04/28/03 17:38	86768	30(29)	31(30)	29(28)	34(34)	920
03/14/03 17:22	78321	31(31)	32(32)	30(30)	34(34)	920
02/06/03 21:10	70693	31(31)	32(32)	30(30)	29(29)	920
01/23/03 18:23	67219	31(31)	31(31)	30(30)	29(29)	920

2x2 DAC-values correspond approximately to: 24 = 400 MeV, 29 = 600 MeV and 34 = 800 MeV

4x4 DAC-values correspond approximately to: 29 = 1.4 GeV, 30 = 2.1 GeV, 31 = 2.8 GeV and 32 = 3.5 GeV

RICH4x5 ADC-values correspond approximately to: 920 = 3 p.e.

Omegas come mostly from ERT_electron trigger

Run –3 dA

- Threshold for most of the runs at 600 MeV
 - Only exception run 78435 (out of 17 runs, 1/20 of bbcll1 triggers; 1/40 of ert-electron triggers)
- Total run
 - IntLum~2.6/nb
 - 7.4E9 bbcllv1 raw
 - 1.3e8 bbcllv1 recorded
 - 9.5e7 ERT_electron & bbcll1 raw
 - 7.2e7 ERT_electron & bbcll1 recorded
 - 4.8e8 ERT_phi&bbcll1 raw
 - 4.4e7 ERT_phi&bbcll1 recorded

- Pro.39
 - IntLum~?
 - -6.1e8
 - -0.95e7
 - -9.2e6
 - 7.5e6
 - -4.4e7
 - 5.6e6

 $Pro.39 \sim 10\%$ of data

ERT trigger eff (acceptance)

 Put ert_electron turn on into exodus

- Used exponential pt distribution in (with flow)
- Eff omega ~ 0.33
- Phi ~0.44
- $J/psi \sim .96$
 - Maximum since max
 eff of ert is 80%

Ert: pt acceptance

- ERT trigger hurts low pt acceptance for omega/phi
- Little effect on J/psi

Accepted pt distribution (MC guess)

- E625 effect pt<1.5 GeV
- For phenix
 - run 3 data
 - Enough minbias and phitriggers tocover low pt?

Region covered by E625

Rates (dA and AA)

- dA
 - $-\sim$ assume 40 omegas (\sim 10% of data)
 - 400 omega for run (2.5/nb)
- To AA
 - Assume min bias (no ert) factor of 3
 - dA Npart∼ 8, Au Au-Au min bias npart ~ 109
- Run-4 Au-Au 19wks (intL=0.169 nb-1)
- Cross section dAu~2b, AuAu~6.8b
- 400/.333{ert}*(.169/2.5){lum}(6.8/2){CS}*(109/8){npart}=3300 omegas

Backgrounds

- In dA min bias $S/B \sim 0.5$
- Signal scales line npart, Backgound like npart² so St/B goes like 1/npart
- S/B is $\overline{AuAu \sim 0.5*9/109=.04}$
- Sources [bkg reduction in AuAu no MVD barrel]
 - MVD $(0.8\% X_0)$ [remove barrel for future runs]
 - Dalitz(0.8)+beampipe(0.3)+air(0.2)=1.3
 - Charm(equivalent to 0.2-.3%)
- Reduction of background in future
 - $-((1.3+0.2)/(1.3+0.2+0.8))**2 \sim 1/2.3$
- → S/B in AuAu ~0.1

Significance of signal in dAu vs centrality

centrality	N	S/B	#sig
Mb	400	0.5	10
0-10%	88	0.25	4.7
10-20%	74	0.23	4.1
20-40%	118	0.37	6.6
40-60%	82	0.53	6.6
60-92%	83	1.02	9.2

- Looks ok
- I worry about low pt
- Min bias,and phitrigger (?)

Significance of signal in AuAu vs centrality

centrality	N	S/B	S/B No MVD	#sig No MVD	#sig
Mb	3124	.041	.094	17	11
0-10%	1013	.014	.032	5.7	3.7
10-20%	738	.019	.044	5.7	3.7
20-40%	872	.032	.074	8	5.3
40-60%	374	.075	.18	8	5.3
60-92%	196	.3	1.2	15	7

Notes on numbers in Tony's spread sheet

- Omega's agree, My S/B better after taking the credit for the MVD since I take a narrower window for the background
- Phi I have now added factor of 2 strangeness enhancement ~ now agrees with spreadsheet
- Note I used data to begin ~ has trigger and reconstruction eff (for dA cf with central AA).
- New spreadsheet at http://www.phenix.bnl.gov/phenix/WWW/p/draft/ seto/pwglight/rbup03/rateslvm2.xls

conclusions

- ERT most omegas come in under this trigger
 - eff for omega ~0.3 Hurts low pt
 - Pro.39 $\sim 10\%$ data,
- ~400 omegas for dAu run
 - Centrality looks ok
- \sim 3-4k for Au-Au
 - Assuming no MVD barrel-centrality looks OK
- To do
 - Work out pt expectations
 - Loose cuts
 - phi